

HAE-003-001602 Seat No. _____

B. Sc. (Sem. VI) (CBCS) Examination

June / July - 2017 Physics: P - 602

(Statistical Mech., S.S.P & Plasma Physics) (New Course)

Faculty Code : 003 Subject Code : 001602

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions: (1) Write answer of all questions in main answer book.

- (2) All questions are compulsory.
- (3) Figures on right side indicates marks.
- (4) Symbols have their usual meaning.
- 1 Answer all questions in short:

20

- (1) Who had developed quantum statistics?
- (2) What is fermions?
- (3) The minimum volume of cell in a phase space is
- (4) At high temperature B-E distribution approaches to _____.
- (5) According to whom, crystal containing n-atoms must be considered as a system of 3n-coupled harmonic oscillators?
- (6) Which phenomena explains Richardson-Dushman equation?
- (7) Write the equation of Bragg's law for X-ray diffraction.
- (8) What happens in the powder method when the reflected ray is thrown back by an angle 180°?
- (9) Rotating crystal method is applicable to single crystal specimen only is this a true statement ?

1

(10) In the superconducting state, super conductors are perfect

	(11)) Type-2 superconductors have more than one critical magnetic fields (H_C) - is it true ?		
	(12)		amerlingh Onnes found that the resistance of mercury	
	()		s suddenly to almost zero when the temperature	
		_	below °K.	
	(13)		en the dimensions of a superconductor increases	
	()		er a stress its transition temperature T_{C}	
	(14)	What happened to the critical magnetic field when the		
	()		of super conductor is reduced below 10 ⁻⁴ cm?	
	(15)	In case of thermotropic liquid crystals, the molecular ordering		
	()		ages with	
	(16)		ch crystal have rod like molecules ?	
			which type of crystal molecular ordering is changed by	
	` /		ing the concentration ?	
	(18)	•	en the layer of ZnS: Mn is excited by ultraviolet or	
	, ,		ys it emits luminescence.	
	(19)	Electrical conductivity of plasma increases with increase in		
	(00)			
	(20)	Who	gave the theory of PLASMA oscillations?	
2	(a)	Write short answers to any three of the following: 6		
		(1)	Explain microstates and macrostates.	
		(2)	Explain in brief the Dulong and petit law.	
		(3)	What are bosons and boltzons?	
		(4)	How the superconducting properties of metals can be	
			changed ?	
		(5)	Explain in brief thermodynamic probability.	
		(6)	Discuss the wave and particle properties of X-rays.	
	(b)	Writ	te answers to any three of the following:	
		(1)	Give comparison of M-B, B-E and F-D statistics in	
			brief.	
		(2)	Derive equation of volume in phase space in terms of	
			momentum.	
		(3)	Explain Thermotropic liquid crystals.	
		(4)	Obtain Stefan-Boltzmann law of energy density using	
			Planck's formula.	
		(5)	Explain experimental set up of rotating crystal X-ray	
			diffraction method.	
		(6)	Write application of plasma.	

(c) Write in detail: (any two)

- 10
- (1) Derive the distribution law for F-D statistics.
- (2) Derive Plank's law for Black body radiation.
- (3) Write note on applications of liquid crystals.
- (4) Discuss the features of Laue's X-ray diffraction pattern.
- (5) Discuss: the sterling's approximation.
- 3 (a) Write short answer to the following: (any three) 6
 - (1) Explain in short the change in heat capacity in super conducting state.
 - (2) What is plasma?
 - (3) Explain "Critical magnetic field" in case of super conductivity.
 - (4) What is larmour orbiting?
 - (5) Explain luminescence.
 - (6) What is photo ionization of atoms?
 - (b) Give answer to the following: (any three)
- 9
- (1) Explain Miessner effect of superconductivity.
- (2) Write a note on cholesteric liquid crystals.
- (3) Discuss London's theory of superconductivity.
- (4) Explain PLASMA oscillations.
- (5) Explain "Bremsstranhlung" in case of plasma.
- (6) Discuss ionization of atoms and molecules.
- (c) Write in detail: (any two)

10

- (1) Describe the method of production of plasma in absence of any gas.
- (2) Discuss influence of magnetic field, current strength stress impurity and size on superconductivity.
- (3) Write detailed note on luminescence is sulphide phosphors.
- (4) Write a note: Applications of super conductivity.
- (5) Write detailed note on properties of PLASMA.